Gaussian Curvature of the Bergman Metric with Weighted Bergman Kernel on the Unit Disc
نویسندگان
چکیده
In the paper Gaussian curvature of Bergman metric on the unit disc and the dependence of this curvature on the weight function has been studied.
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کامل$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles
In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle. We prove optimal estimates for the mapping properties of the Bergman projection on these domains.
متن کاملCurvature of Vector Bundles and Subharmonicity of Bergman Kernels
In a previous paper, [1], we have studied a property of subharmonic dependence on a parameter of Bergman kernels for a family of weighted L-spaces of holomorphic functions. Here we prove a result on the curvature of a vector bundle defined by this family of L-spaces itself, which has the earlier results on Bergman kernels as a corollary. Applying the same arguments to spaces of holomorphic sect...
متن کاملBoundary Behaviour of the Bergman Invariant and Related Quantities
Using Fefferman’s classical result on the boundary singularity of the Bergman kernel, we give an analogous description of the boundary behaviour of various related quantities like the Bergman invariant, the coefficients of the Bergman metric, of the associated Laplace-Beltrami operator, of its curvature tensor, Ricci curvature and scalar curvature. The main point is that even though one would e...
متن کامل